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ABSTRACT

Two-dimensional and axisymmetric, inviscid, hyper-
sonic flows about simple slender bodies are considered with
particular reference to pressure distributions and shapes
of shock waves. Approximate solutions, based on blast
analogy, are derived and compared with more exact, theo-
retical calculations and with experimental results. The
validity of correlation parameters predicted by the blast
analogy and the range of their applicability are investigated.
Near-exact theoretical results available for real airflow at
Mach numbers from 15 tc 19 are compared with the perfect
gas data.
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NOMENCLATURE

Functions, Eq. (62)

Velocity of sound

Constants

Function, Eq. (64)

Drag coefficient

Drag

Plate thickness or cylinder diameter

Explosion energy per unit area of the surface of shock
front when R = 1

Functions, Eq. (3)

Constant

Mach number

Mach number component normal to shock front

Shock Mach number ( = V/a_)

Static pressure; pressure on plate or cylinder surface
Pitot pressure

Shoulder pressure

Pressure at shock

Distance from shock to origin
(Ea'/Poo) 1/(a + 1)

Radial or normal co-ordinate

Distance measured along shock

Time

Velocity component in the free-stream flow direction
Velocity of blast wave

Velocity component normal to the free-stream flow
direction or flow velocity caused by explosion

Distance from nose in the free-stream flow direction

Distance from shoulder in the free-stream flow direction
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s V

SUBSCRIPTS

o0

SUPERSCRIPTS

()’
()//

10

—2

Mg

Constant; =0 for plane flow, = 1 for axisymmetric flow
Functions, Eq. (13)

Ratio of specific heats

r/R

Density

Body thickness parameter

Functions, Eq. (8)

Function, Eq. (76)

Free stream

First approximation

Second approximation
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INTRODUCTION

This report deals with the problem of inviscid hypersonic flow of
air over simple slender bodies. Two-dimensional and axisymmetric
flows are considered with particular reference to pressure distributions
and shapes of shock waves. Approximate solutions, based on blast
analogy, are derived and compared with more exact, theoretical calcu-
lations and with experimental results., The validity of correlation param-
eters predicted by the blast analogy and the range of their applicability
are investigated. Near-exact theoretical results available for real air-
flow at Mach numbers from 15 to 19 are compared with the perfect gas
data.

The author wishes to thank Messrs. H. W. Ridyard, R. E. Geiger,
and the General Electric Company for permission to use their unpublished
flow field computations and Mr. Vernon Van Hise of the NASA Langley
Research Center for making his original data available. His thanks are
also due to Miss P. Mitchell and Mrs. B. Majors for their help with the
preparation of this report.

BASIS OF BLAST ANALOGY

The equations of small disturbance theory of steady, hypersonic flow
(Ref. 1) may be written as:

Continuity:
u py + (pv), + apv/r = 0

Momentum:
u, v + vy, + p/p =0 & (1)

Energy:

u,pp ™) + vipp™) =0
J

with « = 0 for plane and « = 1 for axisymmetric flow.

As pointed out by Van Dyke (Ref. 1) and Hayes (Ref. 2), these equa-
tions do not involve the streamwise velocity u, and therefore the flow in
the transverse planes can be treated independently.

Manuscript released by author April 1961.
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The equations of one-dimensional, unsteady flow are:

Continuity:
N
Py + (pv), + apv/r = 0
Momentum:
vy o+ Vv, o+ pr/p =0 3 (2)
Energy:
(ppY) + vipp™), =0 )

Hayes (Ref. 2) pointed out that the steady flow, as described by the
small disturbance theory, is analogous to the unsteady flow, since, by
putting u_, = d&x/dt, Eq. (1) becomes identical with Eq. (2). In other

words, for an observer stationary with respect to the undisturbed fluid,
the small disturbance theory flow is given by the unsteady solution in
one fewer space co-ordinates, so that flow in the plane normal to the
direction of motion can be treated independently of x.

If a solution could be obtained for the simpler unsteady problem,
then the corresponding steady-flow problem could also be solved; this
procedure has been generally known as the blast-wave analogy method.
Before this method is applied herein, it is pertinent to recognize the
assumptions inherent in the steady and unsteady solutions involved and
to examine their compatibility.

The hypersonic small disturbance theory is applicable to slender
bodies, such that the body thickness parameter << 1 (since terms of
the order of * are neglected), and at large Mach numbers, such that
M r 2> 1. Since the longitudinal velocity component is eliminated in this
approximation, the drag of a body is given entirely by the energy of the
transverse flow: the drag work expended by moving the body to a given
transverse plane is equal to the increment of energy of the transverse
flow up to that same plane. The energy of the flow in the transverse
plane per unit length will not change when the slope of the body surface
is zero; therefore, within the hypersonic, small disturbance approxima-
tion, the energy of the transverse flow will remain constant downstream
of the forebody or nose when it is followed by a zero-slope afterbody,
such as a flat plate or cylinder.

Turning now to the case of unsteady flow, approximate solutions for
the spherical, cylindrical, and plane unsteady flows with constant energy
have been obtained for cases in which the shock wave which contains the
flow field is strong, the shock Mach number being large.

12
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Consider a configuration consisting of a blunt nose followed by a
zero-slope, flat plate or cylindrical afterbody at a large flight Mach
number, For such a body, the hypersonic small disturbance theory
will not apply in the nose region, since r << 1 is violated in that region.
Also, it will not apply far downstream, where the shock has decayed
and flow deflections are negligible, because no longer is M_r > 1. There-
fore, for a body of this type, the hypersonic, small disturbance theory
will apply in a region of certain limited extent downstream of the nose.
In this region, the body surface slope is zero, the energy in the trans-
verse plane is constant, and hence the unsteady solutions are applicable.
The success of the blast-wave analogy will thus largely depend on the
accuracy of the solutions of unsteady, constant energy flows.

APPROXIMATE SOLUTIONS OF UNSTEADY, PLANE AND CYLINDRICAL,
CONSTANT ENERGY FLOW

Following the work of Taylor (Ref. 3), Sakurai (Ref. 4) obtainedfirst
and second approximations to unsteady, constant energy, plane, cylin-
drical, and spherical flows. In this section, Sakurai's results are sum-
marized for use with the blast analogy method, and, in general, his
notation is adhered to.

FIRST APPROXIMATION

Approximate blast-wave solutions are constructed in the form of
power series in y = M;, where M; is the shock Mach number. In the

first approximation, all powers of y except zero are neglected; that is,
a strong shock is assumed. The following equations result:

(o)
v/V = )
(o)
PP = 8Ky
(o) (3)
p/p, = hik)
@ + 1)
y (R, /R) = J )
with R = (Ey/p, ) /@ + 1) where E, is the explosion energy per unit area

of the surface of the shock front when R = 1. £, g, and h ©) are
functions of « = r/R, y and «, whereas J, is a constant depending on
Yy and o only.

13
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They are given by:

W
(o) _
fk) = «/y + Ax"
2y + Ba + 1y — (@ + 1
gEZi: 2y y+1—;<(“‘1) (1 - ay + 3a + 1
y + 1 y
(4)
- 2(2¢ + 1 + vy)
(1 — a)y + 3a + 1
a 1 o
oy = Y r Loy =T (y+1—f<“‘ ”)
y -1 y
with A = 1_ y___l,_, n = (2 - a)y2 +(3a +1)y - 1
y oy + 1 V-1 |

The variation of shock position and pressure with time are obtained
from Eq. (3) with V = dR/dt. Thus

(@ + 3)/2
e =1, 2 —(%—) (5)

R a + 3

@ + 3)/[2ta + 1]

ta,, (o)
R, - aia <§0>/(%:> (6)

The boundary or shock conditions (x = 1) are given, to this approxi-

mation, by

v 2 P 1 2y P _y+1
v y + 1 p, Mp y + 1 Poo y — 1 (7

The values computed by Sakurai (Ref. 4) at r = 0 (« = 0) for y = 1.4

are given in Table 1. For other values of y, J, is given in Table 2, and
other functions can be computed from Eq. (4).

14
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SECOND APPROXIMATION

In the second approximation, all powers of y except zero and one
are neglected, and the following equations result:

(0) (0)
0 + (k — K0 W)y

v/V =
(o)
P/Pos = &) (I + ¢ (&) y)/y
p/py, = h((lg)) 1+ x®y) (8)
GO I S SRR WY

where ¢, v, and x are functions of «, ¥, «, and A depends on y and «.

The shock position is again obtained in terms of time as

| R/R, o
e =L L [emy™ @ o ] awm,) (9)

o

and the pressure ratio in terms of shock location as
/e = @[ @@+ D [0 -y ] (10)
For R-e or at infinitely large time, Eq. (10) gives atr = 0 (x = 0)

PP = -0 — )

0.692 for a

Il
o

1

y = L4 (11)

i
—

0.606 for a

For plane wave (a = 0), Eq. (9) gives

—3/2
tae/Ro = (=A) B/, (12)
where
B =‘\JV(1 + v) ~ log, (\fl + v +—\/T/>
(13
and v = -J, M (R/R,) )

For cylindrical wave (a = 1),

ta, /R, = { 1 _[ 1~ JoA (R/R,) ] 1/ }/ (m \]T> (14)

15
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In this approximation, the exact conditions at the shock are satis-
fied for velocity and pressure, that is

- 2 -
vy 4y (15)
P - 2y 1 y — 1
P, y +1 y Ty FI1 (16)
the above equations corresponding to Eq. (8) with
K- 2
Yy + 1
and
(0) (o)
() = - #1)/0 - £Q))
The exact density ratio across the shock is
P _ y + 1 2
E )

This is not equivalent to the corresponding Eq. (8), except for small y
(large M;), when it is expanded to

+ 1 2
p’;=<—-—-;_1> (1- = y) (18)
with
(o)
) = L 1
y -1
and
2
x(l)=~-=y~1

The coefficients in the second approximation are given in Table 1
forr=0(k =0) andy = 1.4,

TABLE 1

VALUES OF COEFFICIENTS IN THE FIRST AND SECOND APPROXIMATIONS TO THE
BLAST SOLUTION, y =14, «x =0 (SAKURAI, REFS. 4, 5)

“ f((g) glo) h((g)) Jo (o) (o) x (o) A
0 0 0.455 0 1.696 -3.86 | -0.617 3. 86 -2.138
1 0 0.424 0 0.877 -3.5 -0. 56 3.5 -1.989

16
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TABLE 2
VALUES OF J, (SAKURAI, REF. 4)

[~ o 1
1.2 3.024 | 1.547

1.3 2.147 1.102
1.667 1.137 0.585

SOME PROPERTIES OF APPROXIMATE SOLUTIONS

In the first approximation, the ratio of pressures at distances «, and «,
is constant at all times and is given by (see Eq. (3)),

(o) (o)
p/<]l/P/<2 = glky) g(KZ) (19)

For y = 1.4, the values obtained for the ratio of pressure at the shock
to pressure at the origin are given in Table 3.
TABLE 3

RATIO OF PRESSURE AT SHOCK
TO PRESSURE AT ORIGIN, y = 1.4

a 0 1

/b, | 2.56 2.68

The difference in the pressure ratio p/p , as given by the first (Eq. (3))
and second (Eq. (8)) approximations, is constant at a given « and y and is
equal to

(o)
(p/p)" = (p/p_) 7 = gl) ¥ () >0 (20)
At « = 0 and for y = 1.4, this amounts to 0.281(z = 0) and 0. 237 (@ = 1).

The relationship between the position of the shock and the shock pres-
sure ratio is given by

R a + 1 J P
< R°> = (°) —pﬂ— (first approximation) (21)
g(1)

17
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a 1 o (o)
e

Peo

(second approximation)

For y = 1.4, the second approximation is

0.69

il

a = 0, (R/Ro) (pR/pm - 2.33)
(23)
1.33

il

a =1, R/R)) (py /Py ~ 2.16)
In the first approximation, the numerical term in the bracket is omitted.

The variation of pressure, density, and velocity with distance (x)
from the origin can be judged from Table 4, in which values of coef-
ficients for the first and second approximations are listed. It is apparent

that pressure (g<°), ¢) exhibits negligible variation for «< 0.4. The density

variation ('°), x) is also small near the origin, whereas velocity (), ©)
varies nearly linearly with «.

TABLE 4
VARIATION OF COEFFICIENTS FOR FIRST AND SECOND APPROXIMATIONS WITH «,
FOR PLANE AND CYLINDRICAL FLOW, y = 1.4

K
a
0 0.2 0.4 0.6 0.8 1.0
(o) 0 0.455 | 0.455 0.461 0. 496 0.631 1.167
g
1 0.424 | 0.424 0.425 0.441 0.531 1.167
0 | -0.617 - -0.573 | -0. 260 0.451 | ~0.143
14
1 |-0.56 - - -0. 45 0.092 | ~0.143
(o) 0 0 0.039 0.225 0.669 1.766 6.000
hO
1 0 0.001 0.019 0.153 0.783 6.000
0 3. 86 - 3.633 3.109 1.674 | -5.000
X
1 3.5 - - - 3.002 | -5.000
(o) 0 0 0.143 0.287 0.437 0.611 0.833
! 1 0 0.143 0. 286 0.432 0.597 0.833
0 }-3.86 - -3.869 [ -3.803 | -3.842 | -5.000
)
1 1-3.5 - - - -3.542 | -5,000

18
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APPROXIMATE STEADY-FLOW SOLUTIONS BASED ON BLAST ANALOGY

The steady, blast analogy approximations are obtained from the
approximate constant energy, blast solutions by superposition of free-
stream velocity v = x/t and by expression of the energy of unsteady
flow in terms of body wave drag. Thus the plane blast solution is anal-
ogous to two-dimensional flow over a blunted plate, and the cylindrical
blast solution corresponds to the case of axisymmetric flow about a
blunted cylinder. In each instance, first and second blast approxima-
tions are used to obtain approximate steady-flow solutions.

In obtaining steady-flow solutions, the shock shape, R/d, and the
pressure distribution, p,/p,_, on the body surface as a function of distance
along the body, x/d, are the main concern. These solutions are strictly
applicable only to flat plates and cylinders at zero incidence. The body
pressure p , denoted below by p, is taken at « = 0, and the body thick-
ness is thus neglected. In view of the invariance of pressure with « and
the small density near the origin (see Table 4) this procedure seems
reasonable.

Static pressure and other parameters of flow inthetransverse plane
are easily obtained from blast solutions, provided the shock shape has
been determined, Since

M. = M, (dR/dx) (24)

R

is given from the shock slope, distributions of transverse pressure,
density, etc., follow from Eqgs. (3) and (8).

It should be noted that, although the second blast-wave approxima-
tion gives essentially exact conditions at the shock surface (see Egs. (15)
through (18) ), the corresponding blast analogy gives correct values of
pressure, etc., at the shock only when the component of Machnumber,M_,
normal to the shock, s,

M = M, (dR/ds) (25)

n

closely approximates Mp . This, however, is consistent with the assump-
tions of the hypersonic small disturbance theory.

For the analogous steady-flow solutions, the blast energy, E,, is
expressed in terms of drag. From the definition of £,

Eaop = ”21“ Dy— o
and

nl 1

hazl v Da=1

19
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where
D = ngse drag of plate per unit length of leading edge

a=10
and
D,_, = nose drag of cylinder

In terms of drag coefficient, Ch»

= d 2

R = 4 M C

°a=0 14 Da:O

and r - (26)

E -y a2 2

a=1 V75 P M Dgy=1
R = ’ 4 M C

O(J.=]. )/ 4 (%] D(I=l J

where Cp is based on plate thickness, d, or cylinder frontal area, =d*/4,
and free-stream dynamic pressure.

FIRST APPROXIMATION

From Eqgs. (5) and (6), the following expressions for shock, shock
slope, and pressure distribution are obtained.

Plane flow (a = 0):

R 3 2/3 1/3 1/3 X 2/3
O e

= 0.774 G,/ <L) 2/3 (28)
d
or
R/d _ gqra _ /D (29)
M:o Cp CDz/a M:Q
for y = 1.4;
1/3 1/3 — 1/3
ae(3)" e ) (30
(31)

I
e
vl
by
@)}
@]
o]
S
AN
n..|><
SN——
1
=
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and
2/3 (o) ~2/3
P _ Y 2 2/s [ x
- <6J0> glo) M2 €y (T) (32)
= 0.121 M2, [CD/(x/d)] +/2 (33)
for y = 1.4,
From Eqs. (29) and (33),
p/p,, = 0.0936 M2 Cp/ (R/d) : (34)
fory = 1.4,
Axisymmetric flow (@ =1):
R _ Yy 4 C 1/4 (X/d)1/2
@ T \ar, D (35)
= 0.795 Cp'/* (x/d) */2 (36)
or
__R/d - 0795 | _x/d
M_~[Cp Mi, A Cp (37)
for y = 1.4;
a_ Ly Vg [(x )
dx 2 <4Jo> D d (38)
= 0.397 Cp * (x/d)-2/2 (39)
and
P [ e (o e
N B e TR (40)
~ 0.067 ML \fc—n /(x/d) (41)
for y = L4,

From Eqgs. (37) and (41),
p/p,, = 0.0423 M2 Cp/(R/d)? (42)

for y = 1.4.
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SECOND APPROXIMATION

From Eqgs. (10) to (14), the following expressions for shock shape
and pressure distribution are derived:

Plane flow (a = 0):

In this case, explicit expressions for shock shape and pressure
ratio were not obtained. Thus, for shock shape:

X = - —3/2
d——Z}LO(/\I) B Ch M, (43)
= 0.066 8 Cp M, (44)

for y = 1.4

where 8 and v are given by Eq. (13) and

v o= =(@4J M/ (R/D) / Mz, Cp) (45)

~ 10.36 (R/d) /(Mjo Cp) (46)
for y = 1.4,

The shock slope is given by

r 1 ,ch ,14—1/ '

dx o JO R/d (47)

0.453 [ 1L+ v 48)
R/d “p (

From Eq. (10),

AN
i

—Al/[(p/pm)/g((g)) + A, - l/f)] ' (49)

0.973 /(p/p_ - 0.692) ' (50)

I

for y = 1.4 which, together with Eq. (43) gives pressure distribution.

In the limit when (t,R, x)»~, the pressure ratio is given by Eq. (11)
(=0.692 for y = 1.4).

The function B8 (Eq. (13)), when expressed in terms of pressure
ratio p/p, (Eq. (50)), can usually be approximated to better than one per-
cent by an expression of the form

g = a(p/pm)b
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where a and b are given, for y = 1.4, in Table 5 for various ranges
of p/p,,.
TABLE 5

VALUES OF CONSTANTS a AND b FOR VARIOUS
RANGES OF p/p_

Ra?),%f:wof A b
2 - 4 1.30 -1.87
4 - 20 0.87 -1.59

20 - 100 0.69 -1.52

Using this form of 8, Equation (43) can be written

o2 o, W /) (51)
- 0.066a Cp, M, (p/p.)" (52)
for y = 1.4;
or
b & (—)\1)3/2 x/d 1/b
Poo [ Ya Mz Cp e
o 1/b
= [(15.15/&1) W] (54)
o0 D
for y = 1.4

which is analogous to the first approximation, Eq. (32).

A more convenient form of the second approximation for pressure
distribution can be derived as follows:

From Egs. (32), (43), and (49), the pressure ratio (p/p_)’, as given
by the first approximation at a given x/d, can be expressed in terms of
the second approximation pressure ratio (p/p_)”" at the same x/d by

I

(o)
[(P/Pw)' ~(2/3)** glo) A, B~ ] /4 (55)

and
(p/p)’

I

0.7433 7% (56)
for y = 1.4

and is therefore a function of (p/p_)"* only.
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The values of

[0/ G ],

as obtained from Eq. (56), are tabulated in Table 6 and plotted in Fig. 1
in terms of the difference (p/p_ )" - (p/p.)" vs (p/p.)""

TABLE 6

PRESSURE RATIOS AT SAME x/d
(a=0, y=1.4, FIRST AND SECOND APPROXIMATIONS)

(p/p.)", .l 0.692 (0.8 |1 2 5 10

(p/Pos)’csa || O 0.191(0.428 |1.473}14.493(9.503

From Fig. 1, it is evident that the Simplified expression

(p/pe)”” = (p/p,)" + 0.56 (57)

2/3

= 0121 M2 [y fx/d) |+ 056 (58)

gives the second approximation pressure ratio to better than 1.5 percent
when p/p, > 1, vy = 1.4

For the shock shape (Eqgs. (10) and (26)),

R Y WM c P/Pos Oy~ ¥
d a1, 7 D/[ ((0)) " v (59)
glo

= M, CD/[10-65(P/PDO) - 7.37] (60)
for y = 1.4, and using the simplified expression (Eq. (58)),
R/d - _ 0.774
M2 Cp w2, [CD/(x/d)] 2/2 1,09 (61)
for y = 1.4.

For p/p, > 1, this equation gives values to within 4. 5 percent of the second
approximation (Eq. (44)).

Axisymmetric flow (a = 1)
A‘,T /1-—2Bd_ (62)

= GCp /1) /T

I

R
d

with

>
!
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and
B = A, /6Cp) /M2
hence
R/d_ — 0,705 <———"/d 1/2<1+ 3.15 —x/d )m
Moo \/E M2 ,/CD MZ J Cp (63)
for y = 1l.4.
drR _ o
with
C =1 = 2 Bx/d)/(x/d)
‘ () —1
po_ Vysle) Vepmi|, o MV x/d SR G
Pey 87, x/d VY M2y Cp gror
M’xlc x/d -1
= 0.067 —=* P11 4 315 ———— + 0.606 (66)
x/d Moo'lc])

Using the same procedure as in the case of plane flow, simpler
equations for the second approximation are derived. From Egs. (40)
and (65),

(o) -1 o
(;JT): (me) [1— ::;_/gp(:))_J —géo)) Ny - ) (67)
- (-P—) [1 4 0.201/6p/p,)] " + 0.606 (68)

for y = 1.4,

Numerical results are given in Table 7 and Fig. 1. From Fig. 1, it is
evident that the simplified expression

(2) () - v o9
_ 0.067 M;.o_/\/‘dE + 0.44 (70)

gives the second approximation pressure ratio to better than one percent
when p/p > 1, y = 1.4.
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TABLE 7

PRESSURE RATIOS AT SAME x/d
(@ = 1, y = 1.4, FIRST AND SECOND APPROXIMATIONS)

(p/p,)” |1 0.606 |0.958|1.432{2.415(5.404 |10.4

(p/p)” || O 0.5 1 2 5 10

For the shock shape, Eqs. (10) and (26) give

f o) ()] =2
T?—J(i)- MooV Cpy [P/Pm + Ay = '»Z')g(o)] (71)

0.206 M_+[C (p/p,, ~ 0.606) /2 (72)

i
d

Using Eq. (69), the simplified expression is

RO 0.795 M, VCp

d [M; VEp /tx/d) = 2.478]‘/’ ’ (73)
For p/p_ > 1, this expression gives values to better than one percent of
the second approximation, Eq. (63).

SUMMARY OF BLAST ANALOGY SOLUTIONS FOR y = 1.4

For convenience, the above-derived results for y - 1.4 are listed
as follows:

Plane Flow

First approximation:

R/d (x/d) 2
= 0.774 ——
Mg, Cp o M2, cp? (29)
2/3
2 - 0121 M, [CD/(x/d)] (33)

Second approximation (simplified expressions):
R/d _ 0.774

M2 cp M2 cp?? /(x/d)¥? ~ 1.09 (61)
MZ 2/3

p/p. = 0121 —= P __ | 056 (58)
& (x/)¥/?
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Axisymmetric Flow

First approximation:

_ R _ o795 [ __x/d
Moo \/ CD M:Q\ CD (37)
p/p. = 0.067 _M_v%/_ \{i_c_lz (41)

Second approximation:

Exact:
R/ gq05 (x4 \" (1,315 x4\
Mo T 2 dcn> TANES (83)
Simplified:
_ R/ = 0795/ (M \[Cpy / (x/d) ~ 2478 (73)
M CD
Simplified:
p/p,, = 0.067 M°°_x \/Jd(_:P_ + 0.44 (70)

OTHER BLAST AND STEADY-FLOW SOLUTIONS

The original Taylor's (Ref. 3) solution (first approximation) of a
spherical blast was extended by Lin (Ref. 6) to the case of a cylindrical
blast. Lin also obtained the axisymmetric, steady-flow solution (first
approximation) analogous to the cylindrical shock. At about the same
time, Sakurai (Refs. 4, 5) published first and second approximation
solutions of plane, cylindrical, and spherical blasts. Cheng and Pallone
(Ref. T7) applied the plane wave, first approximation solution to the case
of steady flow past a blunt plate, for y = 1.4 and 1.667. They also sug-
gested that, in order to extend the validity of the solution to higher
x/d values, the pressure should be interpreted as an increment over the
free-stream pressure rather than as the absolute value,

In Table 8, the numerical values of coefficients quoted by the above-

mentioned authors are compared with the values given by Sakurai (Ref. 4)
and used in this paper.
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TABLE 8
VALUES OF COEFFICIENTS

IN THE FIRST BLAST-WAVE APPROXIMATION (y = 1.4)
Coefficient I, g((;’))
a 0 1 0 1
Sakurai (Ref. 4) 1,696 0.877 ] 0.455 | 0.424
Cheng and Pallone (Ref. 7)| 1.121% 0. 319
Lin (Ref. 6) 0.858 0.4317

*Cheng et al (Ref. 8) pointed out that this value is in error.

Lees and Kubota (Refs. 9 and 10) applied Sakurai's results to obtain
second approximation, steady-flow solutions analogous to the case of
cylindrical blast. They derived ""simplified" expressions for the case
of a hemisphere-cylinder, as follows:

p/p, = 0.0655 M/ (x/d) + 0.405 (74)
R/d = 078y x/d [ 1 + 1.62 (c/d) / M2 | (75)

These expressions correspond to the binomial expansion of Eqgs. (66)
and (63), using the modified-Newtonian drag coefficient for a hemi-
sphere at M, = 7.7, y = 1.4 (Cy = 0.914).

Love (Ref. 11) proposed a method of calculation of bluntness-induced,
inviscid, steady-flow pressures downstream of hemispherical and hemi-
cylindrical noses. In his method, a value of the pressure at the shoulder
is calculated or assumed, and the pressure decay as given by the first
approximation, blast-wave analogy is taken. Love's expression in terms
of free-stream pressure, p_, is as follows:

ph = [1 4 /0] 1w T (76)
where
b = pen/Pe = Psn/Po ") (o "/Pos)
and
p,, = Shoulder pressure, i. e., pressure at the juncture of hemi-

spherical (or hemicylindrical) nose to the cylindrical (or
slab) afterbody;

p,” = stagnation point pressure;

x’/d

dimensionless distance measured from the shoulder.
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Theoretical calculations indicate that, at Mach numbers > 5, pg /p,’ re-
mains approximately constant and equal to 0. 045 in axisymmetric flow
and to 0. 117 in two-dimensional flow (y = 1.4). The values of exponent a
are taken as 1 and 2/3, respectively, in these two cases, following the
blast analogy. Using these values, Love's expressions can be written
as follows:

1. hemicylinder - flat plate:

-1 - ’,
P/Pos = 0.117 [1 + (x'/d)z/{\ (po»/pw)+[1 + (x'/d)‘%] 0117 p, /Poo

(77)

2. hemisphere-cylinder:

] —0.045 p, /by

p/py, = 0.045 (1 + x/d)=" py /p + |1 + G/ (78)

The value of p_ */p, is a function of the free-stream Mach number.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS
WITH APPROXIMATE SOLUTIONS

The various blast analogy and other approximations listed above are
compared here with three kinds of data;:

1. results of theoretical calculations of flow about simple bodies,
for ideal and real air;

2. measurements from wind and shock tunnel experiments;

3. results of correlations, in terms of blast-wave analogy param-
eters, of theoretically calculated flows.

As regards experimental data, only those measurements made at
Reynolds numbers high enough to render the viscous effects negligible
are included.

PLANE FLOW

On the basis of calculation (method of characteristics) and correla-
tion of flow about flat plates with sonic wedge leading edges, Baradell
and Bertram (Ref. 12) suggested the following expression* for pressure
distribution (y = 1.4):

P/Pe = 0.117 M2 | Cp /(x/d)] 2 + 0.732 (79)

*This is derived from Eq. (7) of Ref. 12, with (p - p_)/p, increased
by 3 percent for y = 1.4, as suggested by the authors.
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This formula is quite similar (see Figs. 2 and 8) to the simplified sec-
ond approximation, Eq. (58), and gives slightly larger values of p/p_ at

small values of M., [Cp/ (x/d)]1**, and vice versa. The formula was de-

rived on the basis of two calculations, both for Cp = 1.4 and for M, = 9.5
and M, = 20.

Pressuredistribution measuredon aflat plate witha semi-cylindrical
leading edge is compared with various approximations in Fig. 2. The
experimental data extend to x/d = 10.5. Within this range, all blast-wave
approximations calculated for the experimental pressure drag coefficient of
Cp = 127 show reasonable agreement with experimental values at x/d > 1.5.
The correlation formula of Ref. 12, Eq. (79), gives values very slightly
larger than the second approximation. Although Love's method predicts
correctly the shoulder pressure, it is least accurate at intermediate
x/d values.

Also in Fig. 2 a curve is included showing second blast approxima-
tion computed for M, = 8 and G = 1 instead of the experimental value
of 1.27. The agreement with measurements, although presumably for-
tuitous, is excellent.

In Figs. 3, 4, and 5, approximations to the pressure distribution
and shock shape in plane flow are compared with the theoretical results
obtained from calculations using the method of characteristics.

The superiority of the second approximation to the pressure distri-
bution at large x/d values for a configuration having a high nose drag is
very evident at M = 6.86 from Figs. 3a and b. The difference between
the theoretical and approximate pressure ratios at any given x/d is sub-
stantially constant, and the approximate pressure ratio is within 20 per-
cent of the theoretical value even at x/d = 150. A still better agreement,
to within 10 percent, is obtained with the correlation formula, Eq. (79).

In Fig. 4, the corresponding theoretical and approximate shock
shapes are shown, and the superiority of the second blast approximation
is again evident. This is also the case at M_ = 12.3, Fig. 5; the second
blast approximation gives values to better than 10 percent of the experi-
mental observations,

Results of flow field computations for real air obtained by the General
Electric Company (Refs. 16 and 17) are shown in Figs. 6 and 7. The
blast analogy does not predict the pressure distribution accurately for
y = 1.4; a much better agreement was obtained for y = 1.3, Fig. 6. The
shock slope, as in the previous cases, is well approximated by blast
analogy for y = 1.4. In Fig. 7, the shock Mach numbers, My, computed
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from Eqgs. (24) and (31), are shown and indicate that real gas effects
might affect a significant portion of the flow field.

The data shown in Figs. 2 through 7 are plotted in terms of blast
analogy correlation parameters in Figs. 8 and 9.

All theoretical results for pressure distribution, for y = 1.4, Fig. 8,
correlate well with Eq. (79). The experimental data fall below the cor-
relation of theoretical data. The inadequacy of the first blast approxi-
mation is again clearly seen.

Figure 8 indicates that, although blast analogy provides suitable
correlation parameters, the range of its applicability, in terms of x/d,
depends on values of C, and M_,. For example, with Cp = 1.4, the pre-
diction of pressure ratio becomes poor at M, = 9.5 when /d)**/(M2 ¢, ¥*)
< 0.025(x/d < 5), whereas at M_ = 20, it is good down to about 0.004(x/d =~ 3).

Comparison of results of theoretical calculations for ideal (y = 1.4)
and real air, for Mach numbers of 20 and 15, respectively, presumably
indicates the already noted significant real gas effects.

In Fig. 9, the available data on shock shape are plotted in terms of
correlation parameters of the second approximation blast analogy, to-
gether with the theoretical curve. The two sets of data correlate poorly.
The experimental results agree well with the theoretical curve at large
values of x/d.

From the above review of the limited data available for plane flow,
it is apparent that blast analogy provides useful correlation of pressure
distributions and shock shapes. Pressures are well predicted by the
second blast analogy approximation for ideal gas, y = 1.4; results of a
calculation for real air at M = 15 indicate pressures lower by 20 per-
cent or more. Shock slopes are well predicted by the second blast analogy
approximation, whereas the shock location shows an outward displacement
relative to blast analogy prediction.

AXISYMMETRIC FLOW
Experimental Data

The available experimental pressure distributions on hemisphere
cylinders at Mach numbers 6, 7.7, and 8 are compared with blast analogy

and Love's (Ref. 11) predictions in Figs. 10a, b, and c. In all cases at
x/d > 3, the second blast analogy approximation gives values much more
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realistic than the first approximation and predicts the pressure distribu-
tion accurately at M_=7.7 and 8. Love's method gives the pressure level
accurately at*M_ = 6, x/d > 4, but is less accurate than the second blast
analogy approximation at M, = 8.

Pressure distribution on a flat-nose cylinder at M_ - 8 is shown in
Fig. 11, Within the limited range of measurements (x/d < 5.5), both first
and second blast analogy approximations give an accurate estimate of the
pressure on this high drag (C; = 1.64) body.

The experimental and blast analogy data on shock shapes are given
in Fig. 12 for two of the cases already considered. As in the plane flow,
the second approximation predicts closely the shock slope.

Lees and Kubota (Refs. 9 and 10) measured the radial pitot pres-
sure distribution around the hemisphere-cylinder model at M = 7.7 at
station x/d = 3 and computed the corresponding distributions of other
quantities. These results for p/p, and p/p_ are shown in Figs. 13 and 14
together withthe corresponding blast analogy predictions. The latter were
obtained from Eqgs. (3) and (8) with y = 1/M} computedfrom Eqs. (24), (39),
and (64).

The experimental pressure distribution, Fig. 13, shows an excellent
agreement with the second blast approximaiion over the whole range of
r/R. At the shock, the observed pressure ratio is 5, whereas the one
computed from the second approximation blast analogy is 5. 13.

The density distributions are compared in Fig. 14. As mentioned
previously, the second blast approximation gives the exact density ratio
across the shock only at high shock Mach numbers. In this case, M; = 2.13,
and hence a rather poor agreement is obtained with the experimental dis-
tribution. However, the exact p/p, ratio for M; = 2.13 equals 2,85 and
agrees well with the experimental value (Fig. 14).

Nevertheless, in view of the good agreement in the pressure distri-
butions in Fig. 13, it can be considered that the flow field closely approxi-
mates the second approximation blast solution. It is then possible to write,
for the density distribution, an expression which is exact at the shock and
to determine a function yx’() from the experimental data, Thus, by analogy
to Eq. (17),

oo = b /L1 70 y) (80)

(o)
where h(x) is given by the first blast approximation and x’ is computedto
fit the experimental density distribution of Fig. 14. The values of X’ are
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given in Table 9 and were computed assuming My = 2.11, which corre-
sponds to the experimental pressure and density ratios across the shock.
At higher shock Mach numbers, Egs. (80) and (8) are in close agreement.

TABLE 9
VALUES OF " (Mz = 2.11)

r/R 1 0.95 (0.9 0.8 0.7 0.6 0.5 0.4

X’ 5 1.75 (0.1 [~-1.,45 |-2.45 | -3.2 |-3.8 | -4.25

Theoretical Data for y = 1.4

Van Hise (Ref. 14) published results of calculations of flow fields
about cylinders with a variety of nose shapes, ranging in drag coefficients
from 0.037 to 1. 37. He used the method of characteristics to obtain sur-
face pressure distributions and shock shapes in the flow of perfect gas
with y = 1.4 and 5/3. In most cases, the nose drag coefficient was com~
puted from the surface pressure distributions,

Pressure distributions obtained by Van Hise are shown in Figs. 15a, b,
and c in terms of the blast analogy correlation parameter, (x/d) /(M4 /Cp).

Also in these figures is included the curve given by

P/Po = 0.06 M2 A[Cp / (x/d) + 0.55 (81)

which was derived by Van Hise as representing the best correlation of
all of his results for air (y = 1.4). Equation (81) above closely approxi-
mates the theoretical blast analogy expression, Eq. (70) (see Fig. 24).

It is immediately apparent from Van Hise's results that the blast
analogy provides an excellent means of correlating the pressure data
over a wide range of drag and Mach numbers. It is also apparent that
the range of validity of an expression such as Eq. (81) is limited, in each
case, to a certain range of the correlation parameter. Based on Figs. 15b
and ¢, for bodies with C; = 1 and at M_ > 10, Eq. (81) predicts accurately
the pressure distribution at x/d > 2. The lower limits (in terms of free-
stream Mach number and correlation parameter, (/d)/(M2 \/(TD), of validity
of blast analogy correlation are indicated in more detail in Fig. 16 for
different drag coefficients, based on agreement in the pressure ratio to

*Values of C, assumed rather than computed are given in parentheses
in Figs. 15 and 18. Only the results for y = 1.4 are here considered.
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within 10 percent. The theoretical data of Van Hise is self-consistent,
whereas the experimental data indicate higher limits of the correlation
parameter for given Cp and M_. Similar data are presented in Fig. 17
for M_ = 40 and a wide range of Cy.

As regards the upper limits of the validity of the correlation param-
eter, the available data are not extensive enough to allow their determina-
tion. In the majority of cases considered, good correlation was obtained

for
(x/d)/<1v1; \/(TD) <01 or plp, > 1.

In a number of cases in which calculations have been made into the region
of p/p, < 1 (Figs. 15b and ¢, at M, = 10 and 6.9), significant deviations
from Eq. (81) are evident at p/p,, < 1, but the data appear nevertheless

to be well correlated by the blast analogy parameter. This, however, is
not generally true, as indicated in Fig. 15¢ by the pressure distribution
at M = 20, Cy = 1.37, which deviates from other data already at p/p, ~ 1.3
and at smaller p/p, values. As pointed out by Van Hise*, the results at
p/p, < 1.3 may be subject to significant cumulative errors.

The corresponding available results for the shock shape are shown
in Fig. 18 in terms of the blast analogy correlation parameters. The
correlation is good considering the wide range of drag and Mach numbers
and falls slightly above the predicted (R/d)/(M_[C) values.

Theoretical Data for Real Air in Equilibrium

Two sets of theoretical calculations of flow fields around a hemisphere-
cylinder in real air in equilibrium are available for comparison with blast
analogy predictions and correlations. Feldman (Ref. 15) published results
of characteristic calculations for M ~ 18 (17,500 ft/sec) at 60, 000-ft alti-
tude, and the General Electric Company (GE) (Ref. 16) computed similar
data for M_ = 15 to 19 at 100, 000 to 200,000-ft altitude, using the flow
field method of Gravalos (Ref. 17). Details of the conditions for the
GE calculations are given in Table 10 on the following page.

*Private communication,
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GE CALCULATIONS OF FLOW FIELDS AROUND A HEMSPHERE-CYLINDER
IN REAL AIR IN EQUILIBRIUM

u_, b, Peo s P x 10° T,
Vo | ft/gec | ft Ib/£t2 | slug/ft3 | °R
(15) {14,532 | 0.897 | 100,000 |23.085 |[32.114 |418.79
18.24 | 20,000 | 0.914 | 150,000 | 3.0597 | 3.5642 |500.11
18.1 [20,000 | 0.91 | 175,000 | 1.2334 | 1.4123 |508.79
19.25 | 20,000 | 0.908 | 200,000 | 0.47151 | 0.6118 |449.0

Shock shapes and pressure distributions obtained by Feldman (Ref. 15)
and from blast analogy predictions (for y = 1.4, G, = 1) are shown in Fig. 19.
As for the other data, the shock shape agrees well with the second blast
approximation, except for a substantially constant, outward displacement
of about (1/4) d.

The pressure distribution, as given by the second blast analogy ap-
proximation, shows a fair agreement with theory at large x/d values.

The GE data are shown in Figs. 20 through 23 for M_ = 15 and 18.1.
The shock shapes and, more particularly, the shock slopes are well pre-
dicted. At M_ - 15 (Fig. 21), the pressure distribution agrees well with
all blast analogy approximations for y = l.4at x/d > 3. At M_ = 18.1(Fig. 23),
the agreement is somewhat poorer at x/d < 4, probably indicating a
stronger influence of real gas effects. However, compared to the results
obtained by Feldman (Fig. 19b), a much better agreement with the blast
analogy is evident at small x/d values.

For comparison, results for y = 1.3 are also included in Figs. 21
and 23. It is apparent that a change in y does not account for the dif-
ferences between the calculated and predicted pressure distributions.

The real air data are shown in terms of the blast analogy parameters
in Figs. 24, 25, and 26, together with the experimental results and curves
representing blast analogy solutions and other correlations.

At lower values of the pressure ratio (Fig. 24) the real air results
show a fair agreement with the other data. At pressure ratios above
about 4, the real air results for M_ - 18 to 20 show a marked divergence
from the blast analogy and the correlation of theoretical data for y = 1.4.
Also, unlike the theoretical computations for cone-cylinders and cone-
sphere-cylinders (Fig. 15), the pressure distributions at M, = 18 to 20
in real air correlate well from the shoulder (x/d = 0.5) downstream.
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These trends are more clearly shown in Fig. 25. It is evident that,
whereas the M_ = 15 results in real air are in fair agreement with the
y = 1.4 characteristic and blast analogy correlations, the M, = 18 to 20
data correlation shows a large change in slope, which cannot result
from a simple change in the value of y.

Shock shapes for real air are compared in Fig. 26 with the theoreti-
cal blast analogy approximations (y = 1.4) and experimental data (y = 1.4).

At larger values of x/d [(x/d)/(M:o \[E_l; ) > 0.01], the real air results closely

approach the second approximation blagt analogy prediction for y = 1.4.
As indicated in Fig. 26, the agreement would be worse for y < 1.4, The
only available experimental data fall above the blast analogy prediction,
as already indicated (Fig. 12b). At small x/d values, smaller R/d values
and smaller shock slope than predicted are found. This trend for real
air coincides with results of the characteristic computations for y = 1.4
(Fig. 18).

The radial pressure and density distributions computed by GE (Ref. 16)
at M, = 18.1 are compared with blast analogy predictions for y = 1.4 in
Figs. 27 and 28.

As already observed, the pressure distribution (Fig. 27) is well pre-
dicted at larger x/d values; in all cases, the first approximation agrees
better with the theoretical results than the second approximation. This
would be expected in view of the similarly better agreement in shock
slope (Fig. 22).

The density distribution (Fig. 28) is in all cases well predicted at
r/R > 0.8. At the shock, the second approximation gives more accurate
values, and still closer ones are obtained using Eq. (80). At /R < 0.8,
the predicted density is much smaller than the computed one.

CONCLUDING REMARKS

Comparison of blast analogy (second approximation) solutions with
correlations based on characteristic calculations for plane and axisym-
metric flows shows good agreement between the two and thus provides a
confirmation of the validity of the blast analogy method. The range of
applicability of the blast analogy solutions depends on the values of param-
eters (e. g., M_ and Cp) which define the flow field; however, in general,
at high Mach numbers and for ideal gas (y = 1.4), the blast analogy pre-
dicts rather accurately the pressure distributions and shock shapes from
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2 to 3 diameters downstream of the nose to downstream stations at which
the pressure has decayed to the free-stream value. Although the shock
is displaced from the body more than predicted by blast analogy, the
latter gives accurate values of shock slope.

As regards application of the blast analogy method to flow of real air,
the available data are limited to semi-cylinder-plate and hemisphere-
cylinder configurations at M_ = 15 to 19, at altitudes from 60, 000 to
200, 000 ft. Comparisons indicate that blast analogy for y = 1.4 predicts
accurately the shock slope; the pressure distribution is predicted about
as well as for experimental measurements made at lower Mach num-
bers (6 to 8) and temperatures.
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